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Abstract. We present a method for enabling an Aldebaran Nao hu-
manoid robot to perceive bumps and touches caused by physical contact
forces. Dedicated touch, tactile or force sensors are not used. Instead, our
approach involves the robot learning from experience to generate a pro-
prioceptive motor sensory expectation from recent motor position com-
mands. Training involves collecting data from the robot characterised by
the absence of the impacts we wish to detect, to establish an expectation
of “normal” motor sensory experience. After learning, the perception of
any unexpected force is achieved by the comparison of predicted motor
sensor values with sensed motor values for each DOF on the robot. We
demonstrate our approach allows the robot to reliably detect small (and
also large) impacts upon the robot (at each individual joint servo motor)
with high, but also varying, degrees of sensitivity for different parts of
the body. We discuss current and possible applications for robots that
can develop and exploit proprioceptive expectations during physical in-
teraction with the world.
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1 Introduction

Most animals have a rich sense of touch to provide feedback during interaction
with the world. By fusing touch, proprioception, and other sensations they are
able to perceive collisions and forces upon their body. Robots however often have
hard protective shells, and lack equivalent tactile sensors. For robots to interact
meaningfully with the environment, they will need to be capable of detecting
expected and unexpected collisions with other objects, people, and themselves.
Our aim is to model perceptions related to contact forces on robots that do
not possess a dense array of dedicated touch, tactile or force sensors. Examples
of such robots include the Sony AIBO or the Aldebaran Nao. We achieve this
by identifying discrepancies in sensed angular motor position values caused by
impact forces between the robot’s limbs and objects within its environment.
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This paper is structured as follows: Section 2 describes the application prob-
lem domain - robot soccer, and in particular the Standard Platform League
(SPL). Section 3 describes other approaches for detecting physical contact with
similar robots (i.e. robots without dedicated touch/tactile sensors). Next, we
describe our approach based on proprioceptive motor sensory expectations, and
how it differs from other relevant techniques, and the advantages it offers. Our
implementation details are described in Section 5. Section 6 describes the re-
sults of experiments used to test our approach, and we conclude by discussing
the current and future applications of the approach.

2 Problem Domain: The Standard Platform League

Robot soccer, as per human soccer, is a contact sport. It is dynamic, with fre-
quent collisions and subsequent falls (perhaps more so in robot soccer, given
the current state of the art). Such collisions can occur between multiple players,
between players and referees, between players and the ground, players and the
ball, players and the goal posts, and so forth. Players limbs also make (often
accidental) impact with other parts of their own body (a self-collision).

In the RoboCup Standard Platform League (SPL), all teams participate with
“identical”3 robots. In the past the league used the Sony Aibo four-legged robot,
and today the SPL uses the Aldbaran Nao humanoid robot. In SPL soccer
matches, unwanted and undesirable collisions with other robots and obstacles is
a common occurrence. With Aibos it could result in “leg-locking” [7], and with
Naos it often results in a fall. In both cases, major damage to the robots can
occur.

The Aldbaran Nao robots are equipped with sensors such as head mounted
colour cameras, front-facing ultrasonic distance sensors, force sensors in the soles
of the feet, bump detectors on the toes of each feet, accelerometers, and gyro-
scope. While the “pushing”4 rules in the SPL are designed to encourage robots
to avoid colliding with each other, collisions still occur with regular frequency.
This is due to a number of factors. Both vision-based and sonar-based object
avoidance is hampered by the small field of view of both these devices, with many
robot-robot collisions occurring when one robot hits another from behind or from
the side. Other techniques for detecting collisions involve the use of accelerome-
ters and gyroscopes, but this involves detecting a collision after it happens (often
at a point when the robot has already become unstable). Instead, it would be
more useful to anticipate collisions, and to react to unexpected collisions almost
instantaneously. Thus, a better solution is required.

3 This is the ideal - in practice, teams use similar robots provided by the same man-
ufacturer.

4 A robot deemed by the referee to be guilty of pushing another robot is removed from
the field of play for a period of time.
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3 Background and Related Work

Detecting collisions is important for most autonomous robots. For robots to work
safely alongside and with humans, they must be capable of detecting physical
contact and/or responding appropriately. Many approaches to achieving safe hu-
man robot interaction (HRI) focus on building compliant robots through the use
of variable stiffness actuators, which can absorb collision energies through com-
pliant mechanisms, while achieving precise joint positioning through variation
of stiffness gains. Compliance can be implemented in different ways - mechani-
cally, e.g. through the use of internal springs as a potential energy buffer [9]), or
through the use of intelligent software controllers (e.g. that dynamically adjust
their commands in response to joint torque sensors [3]). Collision prevention
strategies can also be imposed on the controller, e.g. by imposing forbidden
workspace area constraints [1].

In the RoboCup domain, approaches to detecting collisions have focused on
processing data from accelerometers or joint position sensors. Approaches utilis-
ing the accelerometer involve discriminating between patterns of data produced
under different gaits and/or environmental conditions. For example, Vail and
Veloso [8] demonstrate how the accelerometer sensor of a Sony Aibo can be used
to identify different surfaces upon which the robot is walking through a decision
tree. In soccer matches, Mericli et al. [6] demonstrate how a Sony Aibo’s ac-
celerometer readings can be analysed statistically to probabilisticly discriminate
between “normal” walking, and walking in which a collision has occurred.

Another strategy for detecting collisions is to process the joint position data
for each degree of freedom on the robot, with the aim of distinguishing nor-
mal, collision-free sensor readings, and sensor readings produced when the robot
is experiencing a collision. Quinlan et al. [7] describe a fault detection system
operating on the Sony Aibo, in which slip and collisions are detected by measur-
ing the normal variation in the robot’s motors during normal locomotion tasks,
and comparing this with data collected in which collisions and slips occur. Af-
ter training, a collision or slip is detected if multiple consecutive readings of
a sensed motor position value are outside a range of two standard deviations
from an expected value. Hoffman and Gohring [5] describe a collision detection
process (also implemented on the Sony Aibo) in which they compare command
data with sensor data. The difference between command values and sensor val-
ues are measured over a period of time (96ms, 12 frames). If the robot’s range of
motion is impaired because of a collision with another object, the difference be-
tween command value and sensor value increases. If the error is above a certain
threshold for a particular movement, a collision is detected.

Each of these approaches have their particular strengths and weaknesses.
Accelerometers allow the robot to detect collisions independent of the point of
contact (useful on a robot without tactile sensors), but require disturbing the
robot’s body (e.g. if an obstacle hits the robots chest, the accelerometer would
detect this, even though there is no motor in the chest). However, using the
accelerometer to detect a collision requires the collision to be of sufficient force
that it disrupts the stability of the robot (which is a problem on a humanoid
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robot, such as the Nao as some collisions are detected too late for the robot
avoid a fall). Conversely, accelerometers might fail to detect collisions in which
a motor’s range of freedom is impaired, but the particular motor impedance
is not sufficient to effect the stability of the robot. Approaches which rely on
detecting collisions through impedances of motors rely on a collision restricting
the range of motion of one of the robot’s limbs. While this approach may be
capable of detecting some gentle collisions, it will fail to detect any collision that
does not impede the robot’s range of motion. All approaches however, regardless
of their input sensory device, rely on discriminating between sensor input during
collision-free movement and collision-impaired movement.

4 Our Approach

Our goal was to use motor position sensors to provide the Nao with a sense of
“touch” that provided more sensitivity and scope than existing methods. We
aimed to build a system to perceive not only the strong, forceful bumps and
collisions that occur during robot soccer, but the gentler interactions that might
occur when an autonomous robot is interacting with objects and people in its
environment - for example, a human gently pushing or impeding a robot’s arm
or head.

While the previous approaches of [7] and [5] had demonstrated detecting col-
lisions between robots using motor position sensors is possible, these approaches
focused mainly on detecting the (sometimes brutal) types of collisions that oc-
cur only in robot soccer games5. With both approaches, calibration of detection
thresholds is done for each category of motion - thus requiring each new mo-
tion be calibrated. Also, their detection triggers rely on finding differences that
exceed the maximum found in all previous training data for each particular cate-
gory. Thus, sensitivity and responsiveness can only be improved by creating new
categories of motion, and hand-tuning threshold parameters for each particular
motion.

4.1 Sensor Command Difference (SCD)

Intuition suggests that previous commands issued to the motor will effect the
current sensor reading, and that the difference between the most recent command
value and most recent sensor value will not be constant. The motor, being a
mechanical device, is subject to physical forces of varying degrees caused by the
effects of friction , inertia, momentum, and gravity, as well as the effects of these
forces upon the limbs to which it is attached. Impeding forces will likely create
a bigger difference between sensor and command had they not occurred, while
other forces may push the motor towards a target position, reducing sensor-
command difference.

5 Even in robot soccer, it would be advantageous to detect smaller forces earlier, as
a soft touch can act as an early warning system to give the robot time to avoid a
more serious impact.
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We term the difference between the last command value and the current
sensor value the “sensor command difference” (SCD). We examined how the
SCD varied for each of the Nao’s 21 degrees of freedom throughout the course of
a robot soccer game. Data was collected for each motor and statistically analysed.
As can be seen in Figure 1, predictable periodic patterns can be observed in the
SCDs, which probably correspond to foot-ground impacts. Similar patterns were
seen for all motors.

Fig. 1. Top: the sensor and command values for the head pitch and left knee pitch
motors are displayed. Below, the corresponding calculated SCDs for head pitch and left
knee pitch are displayed. The data was collected while the robot was chasing a soccer
ball. Our aim is to predict the SCD every 10ms, and to use discrepancies between SCD
estimates and the sensed SCD to infer the experience of an unexpected force/impact.

To further investigate how the SCD values of the different motors of the Nao
robot were effected by walking, we instructed the robot to walk forwards (with
no rotation and no strafe)6. There was no discernible differences between left
and right motors. However, as can be seen in Table 1 the magnitude of SCD
varied significantly for different parts of the body during the walk. In the legs,
the greatest variances and magnitudes of SCD were found in the knees and hip
pitch motors, while in the upper body both the shoulder pitch and head pitch
experienced large SCD values. The fact that pitch motors (as opposed to yaw and
roll) were most effected by walking suggests that impacts between the ground,
and also the weight of the robot’s body have large effects on SCD.

We speculated that other factors besides walking may also affect SCD values,
such as the velocity and acceleration with which a limb is currently moving

6 Using the Aldebaran walk engine, at full forwards velocity, and with motor stiffness
set to 80 percent.



6

Table 1. Variance of SCD for the robot’s motors while walking forwards (ordered by
greatest variance, top to bottom)

Motor Max SCD (radians) Std Dev SCD (radians)

Knee Pitch 0.140 0.040
Shoulder Pitch 0.080 0.050
Hip Pitch 0.060 0.040
Ankle Pitch 0.050 0.020
Head Pitch 0.050 0.020
Hip Roll 0.040 0.020
Hip Yaw 0.020 0.010
Head Yaw 0.020 0.010
Shoulder Roll 0.010 0.005

Fig. 2. Slow velocity (left) versus fast velocity (right). The SCD of the high velocity
motion is greater in magnitude than the slow velocity motion.
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when it is requested to move to a new position. To test the effects of velocity
and acceleration, we instructed the robot to move its shoulder pitch and roll
motors at varying velocities between two points near the extremities of its range
of motion. As can be seen in Figure 2, requesting the motors to travel at higher
velocities increases SCD.

5 Implementation

Our aim is to enable the robot to accurately estimate the SCD every 10ms7. We
then test this estimate as a means of perceiving unexpected forces.

5.1 Design

We train one neural network per degree of freedom to estimate the SCD for that
motor every 10ms.

5.2 Data Collection and Processing

We programmed our robots to log all motor position commands and position
sensor values every 10ms while performing their normal autonomous duties (e.g.
soccer). This data was then processed to calculate instantaneous velocity and
acceleration, and also the SCD. Training data is characterised by the absence of
the forces we want the robot to perceive. Care is taken that the robot does not
receive bumps or pushes from other robots or people. If the robot experiences
such events, the training data is discarded. Unavoidable events that may effect
SCD, such as foot-ground contact or shifts in the robot’s centre of mass are
included.

5.3 Learning

Each neural network is trained to approximate a function which predicts the
SCD based on the command (c), velocity (v), and acceleration (a), i.e SCD =
f(c,v,a). The function is represented by a matrix of values which represents the
weights of each node on each other. These weights are optimised to approximate
the function (training) as closely as possible using particle swarm optimisation.
Once the neural network has been sufficiently trained, the weights are then
loaded onto the robots. Using the pre-trained weights, the robot can accurately
predict the SCD by calculating its joint command, velocity, and acceleration
and feeding it into a neural network with the same configurations as the neural
network trained off-line.

7 On each DCM callback event.
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5.4 Detection Triggers

We deem an abnormal motor event to have occurred if the predicted SCD differs
significantly from the sensed SCD. This comparison is made every 10ms by the
robot for every motor of the robot. Since the neural network only approximates
the function and considering stochastic errors, our system looks for runs of con-
secutive discrepancies between prediction and measured SCD to infer the motor
is experiencing an unusual force89.

6 Experiments and Results

Each SCD prediction function learnt by the corresponding neural network was
evaluated visually, as per Figures 3 and 4. Neural nets were also evaluated by
the maximum discrepancy between their estimate of SCD and the actual SCD.

Fig. 3. Left Ankle Pitch: neural net estimate of SCD (displayed in red) versus the
actual SCD (blue) experienced by the robot for the left ankle pitch motor for a 20
second duration from a robot playing soccer.

We calibrated detection thresholds during a period of experimentation in
which we would use our hands to gently grab, push and impede a soccer playing
robot. The soccer playing robot used the Aldebaran Walk Engine, and also
performed two different kicking motions (both which require the robot to balance
on one leg). The human would make contact with the robot at different points

8 To date, we have found 5 to be the best figure.
9 Initially we modelled the velocity and acceleration over 50ms to reduce the effects

of noise. However our neural network is then slow to respond to sudden changes of
command.
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Fig. 4. Right Shoulder Pitch: the neural net estimate of SCD (displayed in red) versus
the actual SCD (blue) experienced by the robot for the right shoulder pitch motor for
a 20 second duration from a robot playing soccer.

of the robot’s body. The robot would speak the name of any motors for which
it perceived 5 consecutive discrepancies between estimated SCD and the sensed
SCD. If more than one motor perceived the impact, the name of the motor
with the greatest discrepancy between estimated SCD and sensed SCD would
be uttered by the robot.

Our system was calibrated so that it could be used in RoboCup soccer
matches - as such false positives can be more damaging (strategically) than
false negatives, as it is preferable to chase the ball than avoid a non-existent
obstacle. Table 2 displays thresholds which eliminated nearly all false-positives.
Unfortunately, we have so far been unable to empirically quantify the magni-
tude of the force required to trigger a discrepancy. One difficulty we faced in
evaluating false-negative error rates is applying forces with a known magnitude.
A false-negative can be easily induced with a weak touch, and conversely always
avoided with strong touch or bump. The system is very sensitive to touches of
the arms and head - only light touches are required (they are gentle enough that
that there is little or no disturbance to the robot’s movement. The system is
less sensitive when it comes receiving bumps to the legs, as these forces need to
be of sufficient strength that they disrupt the motion of the leg, and thus the
stability of the robot. This may be due to the nature of the motors in these parts
of the robots body10- it may also be the upper body motors are exposed to less
SCD noise caused by walking than the motors in the legs. Also with regards to
sensitivity, the further a limb was pressed away from the motor controlling that
limb, the less force was required to generate an impact detection, most likely as

10 The motors in the legs appear stronger than the motors in the upper body.
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a result of the leverage provided by the limb against the motor. We attempted
to detect the presence or absence of the ball at the point of impact when kick-
ing by instructing the robot to practice kicks without the ball, but the SCD
discrepancy caused by ball-to-foot contact with our current kicking action and
stiffness settings is so small that this appears impossible11. Table 3 describes
various types impacts that were used to test our approach, and the motors that
would identify the impeding forces.

We are currently using the system in our robot soccer team to detect un-
expected impacts. The system is always operating, regardless of higher-level
behaviour changes (e.g. a new walking gait). So far the system has proved quite
robust to changes in behaviours and walking surfaces. We speculate this is be-
cause of the large effect velocity and acceleration have on SCD over a small
time-scale (we are calculating velocity and acceleration for the last 20ms), and
that these relationships occur in all types of motions. However, further investi-
gation is required.

Bumps and touches are detected regardless of whether the robot is stationary
or moving. Changes to robot configuration are often detected. For example,
a robot trained without a shoulder pad would then detect (via the head yaw
motor) contact between the head and the shoulder pad when the shoulder pad
was replaced. A sensor failure has also been detected via this system12. With
regards to the collisions that occur in the robot soccer domain, our current results
suggest this approach will be very useful for detecting arm-to-arm contact on
the Nao robots, and many other collisions that occur in robot soccer matches.
When the robot becomes severely unstable, this can be detected by a variety of
motors, including head pitch and head yaw. Accelerometer-based approaches [6]
would also make an excellent complementary approach.

Table 2. Threshold values are displayed (left), which were calibrated to remove almost
all false positives.

Motor Threshold(radians)

Head Pitch 0.05
Head Yaw 0.05
Shoulder Pitch 0.05
Shoulder Roll 0.03
Hip Yaw 0.04
Hip Pitch 0.05
Knee Pitch 0.04
Ankle Pitch 0.05
Ankle Roll 0.03

11 Perhaps with changes to our kicking motion and motor stiffness settings it may be
possible to detect foot-ball contact.

12 The robot repeatedly uttered “left ankle pitch” - closer investigation revealed the
sensor value was a constant value, regardless of the position of the foot.
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Table 3. Impact types and the motors that typically identify them.

Description of Forces Motors typically identified by the robot

Impedance of the head Head Pitch (vertical impedance), Head
Yaw (lateral impedance)

Pushing down on the shoulders of the robot Hip Pitch, Ankle Pitch, Ankle Roll
Grabbing robot’s hand Shoulder Pitch, Shoulder Roll, Elbow

Pitch
Grabbing robot’s upper arm Shoulder Pitch, Shoulder Roll, but requires

stronger force than if holding the robot’s
hand

Robot’s foot is impeded while walking (e.g.
by a heavy book)

Ankle Pitch, Ankle Roll, Hip Pitch, Hip
Roll, Head Pitch, Head Yaw

Robot is unsteady (in danger of falling) but
still trying to walk

Ankle Pitch, Ankle Roll, Hip Pitch, Hip
Roll, Head Pitch, Head Yaw

7 Discussion and Conclusion

We have demonstrated an effective approach to collision detection that relies on
“detecting the unexpected”. Sensor and command data is collected from a robot
in which undesirable impacts do not occur. Machine learning is used to generate a
proprioceptive expectation - an estimate of each motor’s sensor position, based
upon previous commands. Physical contact is inferred when a sensed motor
position value differs significantly from a predicted value. Our approach allows
the robot to perceive when its limbs physically contact other objects, despite the
robot not having any dedicated tactile or force sensors at the point of impact.

Our results suggest interpreting SCDs can provide an estimate of force upon
the motors of the robot. Violent actions produce large SCDS; smooth, slow
movements small SCDs. We are yet to examine whether this approach can be
used to perceive the direction of the force (e.g. is it impeding or pushing?), or
whether it can provide a measure of the magnitude of a force.

Future work will extend our approach by fusing motor position values with
the sensed electric current to each motor. We also aim to develop appropriate
behavioural responses to unexpectedly large SCD stimuli. Currently, our robots
only produce a verbal response to unexpectedly large SCD stimuli, and do not
adjust or re-plan their motor instructions. As the Nao allows control of the
stiffness of the robot’s motors (via electric current), a simple approach would be
to dynamically adjust motor stiffness in response to, or the anticipation of, large
SCDs.

Other extensions to investigate include using neural networks that generate
expectations for different types of sensors, such as the robot’s accelerometers and
the electric current sensors in each of the robot’s motors. Also, if accelerometer
information is provided to our robots using our current approach, this may assist
them in predicting large SCDs, while also detecting collisions in which no range
of motion is impeded.
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Lastly, in future work we aim to use SCD measures for improving fine motor
control. For example, if a walk engine dynamically reduces stiffness in antici-
pation of large SCDs, this may produce a smoother walk. While unsupervised
machine learning has been applied to skills such as walking [2] and kicking [4]
in the SPL, feedback for such behaviours is provided through the robot’s visual
system (e.g. a measure of ball distance in the case of a kick, or recognising land
marks in the case of determining the speed at which a robot has walked). We are
not aware of any motor learning research in this domain in which proprioceptive
expectations are used to provide feedback to improve motor control.
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